3.656 \(\int \frac{(d f+e f x)^2}{(a+b (d+e x)^2+c (d+e x)^4)^3} \, dx\)

Optimal. Leaf size=375 \[ \frac{f^2 (d+e x) \left (c \left (20 a c+b^2\right ) (d+e x)^2+b \left (8 a c+b^2\right )\right )}{8 a e \left (b^2-4 a c\right )^2 \left (a+b (d+e x)^2+c (d+e x)^4\right )}-\frac{f^2 (d+e x) \left (b+2 c (d+e x)^2\right )}{4 e \left (b^2-4 a c\right ) \left (a+b (d+e x)^2+c (d+e x)^4\right )^2}+\frac{\sqrt{c} f^2 \left (\frac{b \left (b^2-52 a c\right )}{\sqrt{b^2-4 a c}}+20 a c+b^2\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} (d+e x)}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{8 \sqrt{2} a e \left (b^2-4 a c\right )^2 \sqrt{b-\sqrt{b^2-4 a c}}}+\frac{\sqrt{c} f^2 \left (-\frac{b \left (b^2-52 a c\right )}{\sqrt{b^2-4 a c}}+20 a c+b^2\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} (d+e x)}{\sqrt{\sqrt{b^2-4 a c}+b}}\right )}{8 \sqrt{2} a e \left (b^2-4 a c\right )^2 \sqrt{\sqrt{b^2-4 a c}+b}} \]

[Out]

-(f^2*(d + e*x)*(b + 2*c*(d + e*x)^2))/(4*(b^2 - 4*a*c)*e*(a + b*(d + e*x)^2 + c*(d + e*x)^4)^2) + (f^2*(d + e
*x)*(b*(b^2 + 8*a*c) + c*(b^2 + 20*a*c)*(d + e*x)^2))/(8*a*(b^2 - 4*a*c)^2*e*(a + b*(d + e*x)^2 + c*(d + e*x)^
4)) + (Sqrt[c]*(b^2 + 20*a*c + (b*(b^2 - 52*a*c))/Sqrt[b^2 - 4*a*c])*f^2*ArcTan[(Sqrt[2]*Sqrt[c]*(d + e*x))/Sq
rt[b - Sqrt[b^2 - 4*a*c]]])/(8*Sqrt[2]*a*(b^2 - 4*a*c)^2*Sqrt[b - Sqrt[b^2 - 4*a*c]]*e) + (Sqrt[c]*(b^2 + 20*a
*c - (b*(b^2 - 52*a*c))/Sqrt[b^2 - 4*a*c])*f^2*ArcTan[(Sqrt[2]*Sqrt[c]*(d + e*x))/Sqrt[b + Sqrt[b^2 - 4*a*c]]]
)/(8*Sqrt[2]*a*(b^2 - 4*a*c)^2*Sqrt[b + Sqrt[b^2 - 4*a*c]]*e)

________________________________________________________________________________________

Rubi [A]  time = 0.972237, antiderivative size = 375, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 5, integrand size = 33, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.152, Rules used = {1142, 1119, 1178, 1166, 205} \[ \frac{f^2 (d+e x) \left (c \left (20 a c+b^2\right ) (d+e x)^2+b \left (8 a c+b^2\right )\right )}{8 a e \left (b^2-4 a c\right )^2 \left (a+b (d+e x)^2+c (d+e x)^4\right )}-\frac{f^2 (d+e x) \left (b+2 c (d+e x)^2\right )}{4 e \left (b^2-4 a c\right ) \left (a+b (d+e x)^2+c (d+e x)^4\right )^2}+\frac{\sqrt{c} f^2 \left (\frac{b \left (b^2-52 a c\right )}{\sqrt{b^2-4 a c}}+20 a c+b^2\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} (d+e x)}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{8 \sqrt{2} a e \left (b^2-4 a c\right )^2 \sqrt{b-\sqrt{b^2-4 a c}}}+\frac{\sqrt{c} f^2 \left (-\frac{b \left (b^2-52 a c\right )}{\sqrt{b^2-4 a c}}+20 a c+b^2\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} (d+e x)}{\sqrt{\sqrt{b^2-4 a c}+b}}\right )}{8 \sqrt{2} a e \left (b^2-4 a c\right )^2 \sqrt{\sqrt{b^2-4 a c}+b}} \]

Antiderivative was successfully verified.

[In]

Int[(d*f + e*f*x)^2/(a + b*(d + e*x)^2 + c*(d + e*x)^4)^3,x]

[Out]

-(f^2*(d + e*x)*(b + 2*c*(d + e*x)^2))/(4*(b^2 - 4*a*c)*e*(a + b*(d + e*x)^2 + c*(d + e*x)^4)^2) + (f^2*(d + e
*x)*(b*(b^2 + 8*a*c) + c*(b^2 + 20*a*c)*(d + e*x)^2))/(8*a*(b^2 - 4*a*c)^2*e*(a + b*(d + e*x)^2 + c*(d + e*x)^
4)) + (Sqrt[c]*(b^2 + 20*a*c + (b*(b^2 - 52*a*c))/Sqrt[b^2 - 4*a*c])*f^2*ArcTan[(Sqrt[2]*Sqrt[c]*(d + e*x))/Sq
rt[b - Sqrt[b^2 - 4*a*c]]])/(8*Sqrt[2]*a*(b^2 - 4*a*c)^2*Sqrt[b - Sqrt[b^2 - 4*a*c]]*e) + (Sqrt[c]*(b^2 + 20*a
*c - (b*(b^2 - 52*a*c))/Sqrt[b^2 - 4*a*c])*f^2*ArcTan[(Sqrt[2]*Sqrt[c]*(d + e*x))/Sqrt[b + Sqrt[b^2 - 4*a*c]]]
)/(8*Sqrt[2]*a*(b^2 - 4*a*c)^2*Sqrt[b + Sqrt[b^2 - 4*a*c]]*e)

Rule 1142

Int[(u_)^(m_.)*((a_.) + (b_.)*(v_)^2 + (c_.)*(v_)^4)^(p_.), x_Symbol] :> Dist[u^m/(Coefficient[v, x, 1]*v^m),
Subst[Int[x^m*(a + b*x^2 + c*x^(2*2))^p, x], x, v], x] /; FreeQ[{a, b, c, m, p}, x] && LinearPairQ[u, v, x]

Rule 1119

Int[((d_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[(d*(d*x)^(m - 1)*(b + 2*c*
x^2)*(a + b*x^2 + c*x^4)^(p + 1))/(2*(p + 1)*(b^2 - 4*a*c)), x] - Dist[d^2/(2*(p + 1)*(b^2 - 4*a*c)), Int[(d*x
)^(m - 2)*(b*(m - 1) + 2*c*(m + 4*p + 5)*x^2)*(a + b*x^2 + c*x^4)^(p + 1), x], x] /; FreeQ[{a, b, c, d}, x] &&
 NeQ[b^2 - 4*a*c, 0] && LtQ[p, -1] && GtQ[m, 1] && LeQ[m, 3] && IntegerQ[2*p] && (IntegerQ[p] || IntegerQ[m])

Rule 1178

Int[((d_) + (e_.)*(x_)^2)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[(x*(a*b*e - d*(b^2 - 2*
a*c) - c*(b*d - 2*a*e)*x^2)*(a + b*x^2 + c*x^4)^(p + 1))/(2*a*(p + 1)*(b^2 - 4*a*c)), x] + Dist[1/(2*a*(p + 1)
*(b^2 - 4*a*c)), Int[Simp[(2*p + 3)*d*b^2 - a*b*e - 2*a*c*d*(4*p + 5) + (4*p + 7)*(d*b - 2*a*e)*c*x^2, x]*(a +
 b*x^2 + c*x^4)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e
^2, 0] && LtQ[p, -1] && IntegerQ[2*p]

Rule 1166

Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Di
st[e/2 + (2*c*d - b*e)/(2*q), Int[1/(b/2 - q/2 + c*x^2), x], x] + Dist[e/2 - (2*c*d - b*e)/(2*q), Int[1/(b/2 +
 q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - a*e^2, 0] && PosQ[b^
2 - 4*a*c]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{(d f+e f x)^2}{\left (a+b (d+e x)^2+c (d+e x)^4\right )^3} \, dx &=\frac{f^2 \operatorname{Subst}\left (\int \frac{x^2}{\left (a+b x^2+c x^4\right )^3} \, dx,x,d+e x\right )}{e}\\ &=-\frac{f^2 (d+e x) \left (b+2 c (d+e x)^2\right )}{4 \left (b^2-4 a c\right ) e \left (a+b (d+e x)^2+c (d+e x)^4\right )^2}+\frac{f^2 \operatorname{Subst}\left (\int \frac{b-10 c x^2}{\left (a+b x^2+c x^4\right )^2} \, dx,x,d+e x\right )}{4 \left (b^2-4 a c\right ) e}\\ &=-\frac{f^2 (d+e x) \left (b+2 c (d+e x)^2\right )}{4 \left (b^2-4 a c\right ) e \left (a+b (d+e x)^2+c (d+e x)^4\right )^2}+\frac{f^2 (d+e x) \left (b \left (b^2+8 a c\right )+c \left (b^2+20 a c\right ) (d+e x)^2\right )}{8 a \left (b^2-4 a c\right )^2 e \left (a+b (d+e x)^2+c (d+e x)^4\right )}-\frac{f^2 \operatorname{Subst}\left (\int \frac{-b \left (b^2-16 a c\right )-c \left (b^2+20 a c\right ) x^2}{a+b x^2+c x^4} \, dx,x,d+e x\right )}{8 a \left (b^2-4 a c\right )^2 e}\\ &=-\frac{f^2 (d+e x) \left (b+2 c (d+e x)^2\right )}{4 \left (b^2-4 a c\right ) e \left (a+b (d+e x)^2+c (d+e x)^4\right )^2}+\frac{f^2 (d+e x) \left (b \left (b^2+8 a c\right )+c \left (b^2+20 a c\right ) (d+e x)^2\right )}{8 a \left (b^2-4 a c\right )^2 e \left (a+b (d+e x)^2+c (d+e x)^4\right )}+\frac{\left (c \left (b^2+20 a c-\frac{b \left (b^2-52 a c\right )}{\sqrt{b^2-4 a c}}\right ) f^2\right ) \operatorname{Subst}\left (\int \frac{1}{\frac{b}{2}+\frac{1}{2} \sqrt{b^2-4 a c}+c x^2} \, dx,x,d+e x\right )}{16 a \left (b^2-4 a c\right )^2 e}+\frac{\left (c \left (b^2+20 a c+\frac{b \left (b^2-52 a c\right )}{\sqrt{b^2-4 a c}}\right ) f^2\right ) \operatorname{Subst}\left (\int \frac{1}{\frac{b}{2}-\frac{1}{2} \sqrt{b^2-4 a c}+c x^2} \, dx,x,d+e x\right )}{16 a \left (b^2-4 a c\right )^2 e}\\ &=-\frac{f^2 (d+e x) \left (b+2 c (d+e x)^2\right )}{4 \left (b^2-4 a c\right ) e \left (a+b (d+e x)^2+c (d+e x)^4\right )^2}+\frac{f^2 (d+e x) \left (b \left (b^2+8 a c\right )+c \left (b^2+20 a c\right ) (d+e x)^2\right )}{8 a \left (b^2-4 a c\right )^2 e \left (a+b (d+e x)^2+c (d+e x)^4\right )}+\frac{\sqrt{c} \left (b^2+20 a c+\frac{b \left (b^2-52 a c\right )}{\sqrt{b^2-4 a c}}\right ) f^2 \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} (d+e x)}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{8 \sqrt{2} a \left (b^2-4 a c\right )^2 \sqrt{b-\sqrt{b^2-4 a c}} e}+\frac{\sqrt{c} \left (b^2+20 a c-\frac{b \left (b^2-52 a c\right )}{\sqrt{b^2-4 a c}}\right ) f^2 \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} (d+e x)}{\sqrt{b+\sqrt{b^2-4 a c}}}\right )}{8 \sqrt{2} a \left (b^2-4 a c\right )^2 \sqrt{b+\sqrt{b^2-4 a c}} e}\\ \end{align*}

Mathematica [A]  time = 4.96309, size = 385, normalized size = 1.03 \[ \frac{f^2 \left (\frac{2 (d+e x) \left (8 a b c+20 a c^2 (d+e x)^2+b^2 c (d+e x)^2+b^3\right )}{a \left (b^2-4 a c\right )^2 \left (a+b (d+e x)^2+c (d+e x)^4\right )}-\frac{4 \left (b (d+e x)+2 c (d+e x)^3\right )}{\left (b^2-4 a c\right ) \left (a+b (d+e x)^2+c (d+e x)^4\right )^2}+\frac{\sqrt{2} \sqrt{c} \left (b^2 \sqrt{b^2-4 a c}+20 a c \sqrt{b^2-4 a c}-52 a b c+b^3\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} (d+e x)}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{a \left (b^2-4 a c\right )^{5/2} \sqrt{b-\sqrt{b^2-4 a c}}}+\frac{\sqrt{2} \sqrt{c} \left (b^2 \sqrt{b^2-4 a c}+20 a c \sqrt{b^2-4 a c}+52 a b c-b^3\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} (d+e x)}{\sqrt{\sqrt{b^2-4 a c}+b}}\right )}{a \left (b^2-4 a c\right )^{5/2} \sqrt{\sqrt{b^2-4 a c}+b}}\right )}{16 e} \]

Antiderivative was successfully verified.

[In]

Integrate[(d*f + e*f*x)^2/(a + b*(d + e*x)^2 + c*(d + e*x)^4)^3,x]

[Out]

(f^2*((-4*(b*(d + e*x) + 2*c*(d + e*x)^3))/((b^2 - 4*a*c)*(a + b*(d + e*x)^2 + c*(d + e*x)^4)^2) + (2*(d + e*x
)*(b^3 + 8*a*b*c + b^2*c*(d + e*x)^2 + 20*a*c^2*(d + e*x)^2))/(a*(b^2 - 4*a*c)^2*(a + b*(d + e*x)^2 + c*(d + e
*x)^4)) + (Sqrt[2]*Sqrt[c]*(b^3 - 52*a*b*c + b^2*Sqrt[b^2 - 4*a*c] + 20*a*c*Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]
*Sqrt[c]*(d + e*x))/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/(a*(b^2 - 4*a*c)^(5/2)*Sqrt[b - Sqrt[b^2 - 4*a*c]]) + (Sqrt[
2]*Sqrt[c]*(-b^3 + 52*a*b*c + b^2*Sqrt[b^2 - 4*a*c] + 20*a*c*Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*(d + e
*x))/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/(a*(b^2 - 4*a*c)^(5/2)*Sqrt[b + Sqrt[b^2 - 4*a*c]])))/(16*e)

________________________________________________________________________________________

Maple [C]  time = 0.04, size = 4751, normalized size = 12.7 \begin{align*} \text{output too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*f*x+d*f)^2/(a+b*(e*x+d)^2+c*(e*x+d)^4)^3,x)

[Out]

5/4*f^2/(c*e^4*x^4+4*c*d*e^3*x^3+6*c*d^2*e^2*x^2+4*c*d^3*e*x+b*e^2*x^2+c*d^4+2*b*d*e*x+b*d^2+a)^2*c*d*e^3/(16*
a^2*c^2-8*a*b^2*c+b^4)/a*x^4*b^3+35/8*f^2/(c*e^4*x^4+4*c*d*e^3*x^3+6*c*d^2*e^2*x^2+4*c*d^3*e*x+b*e^2*x^2+c*d^4
+2*b*d*e*x+b*d^2+a)^2*e^2/(16*a^2*c^2-8*a*b^2*c+b^4)/a*x^3*b^2*c^2*d^4+5/2*f^2/(c*e^4*x^4+4*c*d*e^3*x^3+6*c*d^
2*e^2*x^2+4*c*d^3*e*x+b*e^2*x^2+c*d^4+2*b*d*e*x+b*d^2+a)^2*e^2/(16*a^2*c^2-8*a*b^2*c+b^4)/a*x^3*b^3*c*d^2+21/8
*f^2/(c*e^4*x^4+4*c*d*e^3*x^3+6*c*d^2*e^2*x^2+4*c*d^3*e*x+b*e^2*x^2+c*d^4+2*b*d*e*x+b*d^2+a)^2*d^5*e/(16*a^2*c
^2-8*a*b^2*c+b^4)/a*x^2*b^2*c^2+5/2*f^2/(c*e^4*x^4+4*c*d*e^3*x^3+6*c*d^2*e^2*x^2+4*c*d^3*e*x+b*e^2*x^2+c*d^4+2
*b*d*e*x+b*d^2+a)^2*d^3*e/(16*a^2*c^2-8*a*b^2*c+b^4)/a*x^2*b^3*c+7/8*f^2/(c*e^4*x^4+4*c*d*e^3*x^3+6*c*d^2*e^2*
x^2+4*c*d^3*e*x+b*e^2*x^2+c*d^4+2*b*d*e*x+b*d^2+a)^2*c^2*d*e^5/(16*a^2*c^2-8*a*b^2*c+b^4)/a*x^6*b^2+21/8*f^2/(
c*e^4*x^4+4*c*d*e^3*x^3+6*c*d^2*e^2*x^2+4*c*d^3*e*x+b*e^2*x^2+c*d^4+2*b*d*e*x+b*d^2+a)^2*c^2*e^4/(16*a^2*c^2-8
*a*b^2*c+b^4)/a*x^5*b^2*d^2+35/8*f^2/(c*e^4*x^4+4*c*d*e^3*x^3+6*c*d^2*e^2*x^2+4*c*d^3*e*x+b*e^2*x^2+c*d^4+2*b*
d*e*x+b*d^2+a)^2*c^2*d^3*e^3/(16*a^2*c^2-8*a*b^2*c+b^4)/a*x^4*b^2+1/16*f^2/(16*a^2*c^2-8*a*b^2*c+b^4)/a/e*sum(
(c*e^2*(20*a*c+b^2)*_R^2+2*c*d*e*(20*a*c+b^2)*_R+20*a*c^2*d^2+b^2*c*d^2-16*a*b*c+b^3)/(2*_R^3*c*e^3+6*_R^2*c*d
*e^2+6*_R*c*d^2*e+2*c*d^3+_R*b*e+b*d)*ln(x-_R),_R=RootOf(c*e^4*_Z^4+4*c*d*e^3*_Z^3+(6*c*d^2*e^2+b*e^2)*_Z^2+(4
*c*d^3*e+2*b*d*e)*_Z+c*d^4+b*d^2+a))-1/8*f^2/(c*e^4*x^4+4*c*d*e^3*x^3+6*c*d^2*e^2*x^2+4*c*d^3*e*x+b*e^2*x^2+c*
d^4+2*b*d*e*x+b*d^2+a)^2/(16*a^2*c^2-8*a*b^2*c+b^4)*x*b^3+5/2*f^2/(c*e^4*x^4+4*c*d*e^3*x^3+6*c*d^2*e^2*x^2+4*c
*d^3*e*x+b*e^2*x^2+c*d^4+2*b*d*e*x+b*d^2+a)^2*d^7/e/(16*a^2*c^2-8*a*b^2*c+b^4)*c^3-1/8*f^2/(c*e^4*x^4+4*c*d*e^
3*x^3+6*c*d^2*e^2*x^2+4*c*d^3*e*x+b*e^2*x^2+c*d^4+2*b*d*e*x+b*d^2+a)^2*d/e/(16*a^2*c^2-8*a*b^2*c+b^4)*b^3+5/2*
f^2/(c*e^4*x^4+4*c*d*e^3*x^3+6*c*d^2*e^2*x^2+4*c*d^3*e*x+b*e^2*x^2+c*d^4+2*b*d*e*x+b*d^2+a)^2*c^3*e^6/(16*a^2*
c^2-8*a*b^2*c+b^4)*x^7+35/2*f^2/(c*e^4*x^4+4*c*d*e^3*x^3+6*c*d^2*e^2*x^2+4*c*d^3*e*x+b*e^2*x^2+c*d^4+2*b*d*e*x
+b*d^2+a)^2/(16*a^2*c^2-8*a*b^2*c+b^4)*x*c^3*d^6+1/4*f^2/(c*e^4*x^4+4*c*d*e^3*x^3+6*c*d^2*e^2*x^2+4*c*d^3*e*x+
b*e^2*x^2+c*d^4+2*b*d*e*x+b*d^2+a)^2*c*e^4/(16*a^2*c^2-8*a*b^2*c+b^4)/a*x^5*b^3+27/2*f^2/(c*e^4*x^4+4*c*d*e^3*
x^3+6*c*d^2*e^2*x^2+4*c*d^3*e*x+b*e^2*x^2+c*d^4+2*b*d*e*x+b*d^2+a)^2*d*e/(16*a^2*c^2-8*a*b^2*c+b^4)*a*x^2*c^2+
3/8*f^2/(c*e^4*x^4+4*c*d*e^3*x^3+6*c*d^2*e^2*x^2+4*c*d^3*e*x+b*e^2*x^2+c*d^4+2*b*d*e*x+b*d^2+a)^2*d*e/(16*a^2*
c^2-8*a*b^2*c+b^4)/a*x^2*b^4+7/8*f^2/(c*e^4*x^4+4*c*d*e^3*x^3+6*c*d^2*e^2*x^2+4*c*d^3*e*x+b*e^2*x^2+c*d^4+2*b*
d*e*x+b*d^2+a)^2/(16*a^2*c^2-8*a*b^2*c+b^4)/a*x*b^2*c^2*d^6+1/8*f^2/(c*e^4*x^4+4*c*d*e^3*x^3+6*c*d^2*e^2*x^2+4
*c*d^3*e*x+b*e^2*x^2+c*d^4+2*b*d*e*x+b*d^2+a)^2*c^2*e^6/(16*a^2*c^2-8*a*b^2*c+b^4)/a*x^7*b^2+35/2*f^2/(c*e^4*x
^4+4*c*d*e^3*x^3+6*c*d^2*e^2*x^2+4*c*d^3*e*x+b*e^2*x^2+c*d^4+2*b*d*e*x+b*d^2+a)^2*c^2*d*e^3/(16*a^2*c^2-8*a*b^
2*c+b^4)*x^4*b+35*f^2/(c*e^4*x^4+4*c*d*e^3*x^3+6*c*d^2*e^2*x^2+4*c*d^3*e*x+b*e^2*x^2+c*d^4+2*b*d*e*x+b*d^2+a)^
2*e^2/(16*a^2*c^2-8*a*b^2*c+b^4)*x^3*b*c^2*d^2+35*f^2/(c*e^4*x^4+4*c*d*e^3*x^3+6*c*d^2*e^2*x^2+4*c*d^3*e*x+b*e
^2*x^2+c*d^4+2*b*d*e*x+b*d^2+a)^2*d^3*e/(16*a^2*c^2-8*a*b^2*c+b^4)*x^2*b*c^2+15/8*f^2/(c*e^4*x^4+4*c*d*e^3*x^3
+6*c*d^2*e^2*x^2+4*c*d^3*e*x+b*e^2*x^2+c*d^4+2*b*d*e*x+b*d^2+a)^2*d*e/(16*a^2*c^2-8*a*b^2*c+b^4)*x^2*b^2*c+5/4
*f^2/(c*e^4*x^4+4*c*d*e^3*x^3+6*c*d^2*e^2*x^2+4*c*d^3*e*x+b*e^2*x^2+c*d^4+2*b*d*e*x+b*d^2+a)^2/(16*a^2*c^2-8*a
*b^2*c+b^4)/a*x*b^3*c*d^4+1/8*f^2/(c*e^4*x^4+4*c*d*e^3*x^3+6*c*d^2*e^2*x^2+4*c*d^3*e*x+b*e^2*x^2+c*d^4+2*b*d*e
*x+b*d^2+a)^2*d^7/e/(16*a^2*c^2-8*a*b^2*c+b^4)/a*b^2*c^2+1/4*f^2/(c*e^4*x^4+4*c*d*e^3*x^3+6*c*d^2*e^2*x^2+4*c*
d^3*e*x+b*e^2*x^2+c*d^4+2*b*d*e*x+b*d^2+a)^2*d^5/e/(16*a^2*c^2-8*a*b^2*c+b^4)/a*b^3*c+2*f^2/(c*e^4*x^4+4*c*d*e
^3*x^3+6*c*d^2*e^2*x^2+4*c*d^3*e*x+b*e^2*x^2+c*d^4+2*b*d*e*x+b*d^2+a)^2*d/e/(16*a^2*c^2-8*a*b^2*c+b^4)*a*b*c+1
05/2*f^2/(c*e^4*x^4+4*c*d*e^3*x^3+6*c*d^2*e^2*x^2+4*c*d^3*e*x+b*e^2*x^2+c*d^4+2*b*d*e*x+b*d^2+a)^2*c^3*e^4/(16
*a^2*c^2-8*a*b^2*c+b^4)*x^5*d^2+7/2*f^2/(c*e^4*x^4+4*c*d*e^3*x^3+6*c*d^2*e^2*x^2+4*c*d^3*e*x+b*e^2*x^2+c*d^4+2
*b*d*e*x+b*d^2+a)^2*c^2*e^4/(16*a^2*c^2-8*a*b^2*c+b^4)*x^5*b+175/2*f^2/(c*e^4*x^4+4*c*d*e^3*x^3+6*c*d^2*e^2*x^
2+4*c*d^3*e*x+b*e^2*x^2+c*d^4+2*b*d*e*x+b*d^2+a)^2*c^3*d^3*e^3/(16*a^2*c^2-8*a*b^2*c+b^4)*x^4+175/2*f^2/(c*e^4
*x^4+4*c*d*e^3*x^3+6*c*d^2*e^2*x^2+4*c*d^3*e*x+b*e^2*x^2+c*d^4+2*b*d*e*x+b*d^2+a)^2*e^2/(16*a^2*c^2-8*a*b^2*c+
b^4)*x^3*c^3*d^4+5/8*f^2/(c*e^4*x^4+4*c*d*e^3*x^3+6*c*d^2*e^2*x^2+4*c*d^3*e*x+b*e^2*x^2+c*d^4+2*b*d*e*x+b*d^2+
a)^2*e^2/(16*a^2*c^2-8*a*b^2*c+b^4)*x^3*b^2*c+105/2*f^2/(c*e^4*x^4+4*c*d*e^3*x^3+6*c*d^2*e^2*x^2+4*c*d^3*e*x+b
*e^2*x^2+c*d^4+2*b*d*e*x+b*d^2+a)^2*d^5*e/(16*a^2*c^2-8*a*b^2*c+b^4)*x^2*c^3+1/8*f^2/(c*e^4*x^4+4*c*d*e^3*x^3+
6*c*d^2*e^2*x^2+4*c*d^3*e*x+b*e^2*x^2+c*d^4+2*b*d*e*x+b*d^2+a)^2*e^2/(16*a^2*c^2-8*a*b^2*c+b^4)/a*x^3*b^4+27/2
*f^2/(c*e^4*x^4+4*c*d*e^3*x^3+6*c*d^2*e^2*x^2+4*c*d^3*e*x+b*e^2*x^2+c*d^4+2*b*d*e*x+b*d^2+a)^2/(16*a^2*c^2-8*a
*b^2*c+b^4)*a*x*c^2*d^2+3/8*f^2/(c*e^4*x^4+4*c*d*e^3*x^3+6*c*d^2*e^2*x^2+4*c*d^3*e*x+b*e^2*x^2+c*d^4+2*b*d*e*x
+b*d^2+a)^2/(16*a^2*c^2-8*a*b^2*c+b^4)/a*x*b^4*d^2+2*f^2/(c*e^4*x^4+4*c*d*e^3*x^3+6*c*d^2*e^2*x^2+4*c*d^3*e*x+
b*e^2*x^2+c*d^4+2*b*d*e*x+b*d^2+a)^2/(16*a^2*c^2-8*a*b^2*c+b^4)*a*x*b*c+9/2*f^2/(c*e^4*x^4+4*c*d*e^3*x^3+6*c*d
^2*e^2*x^2+4*c*d^3*e*x+b*e^2*x^2+c*d^4+2*b*d*e*x+b*d^2+a)^2*d^3/e/(16*a^2*c^2-8*a*b^2*c+b^4)*a*c^2+1/8*f^2/(c*
e^4*x^4+4*c*d*e^3*x^3+6*c*d^2*e^2*x^2+4*c*d^3*e*x+b*e^2*x^2+c*d^4+2*b*d*e*x+b*d^2+a)^2*d^3/e/(16*a^2*c^2-8*a*b
^2*c+b^4)/a*b^4+9/2*f^2/(c*e^4*x^4+4*c*d*e^3*x^3+6*c*d^2*e^2*x^2+4*c*d^3*e*x+b*e^2*x^2+c*d^4+2*b*d*e*x+b*d^2+a
)^2*e^2/(16*a^2*c^2-8*a*b^2*c+b^4)*a*x^3*c^2+35/2*f^2/(c*e^4*x^4+4*c*d*e^3*x^3+6*c*d^2*e^2*x^2+4*c*d^3*e*x+b*e
^2*x^2+c*d^4+2*b*d*e*x+b*d^2+a)^2/(16*a^2*c^2-8*a*b^2*c+b^4)*x*b*c^2*d^4+15/8*f^2/(c*e^4*x^4+4*c*d*e^3*x^3+6*c
*d^2*e^2*x^2+4*c*d^3*e*x+b*e^2*x^2+c*d^4+2*b*d*e*x+b*d^2+a)^2/(16*a^2*c^2-8*a*b^2*c+b^4)*x*b^2*c*d^2+7/2*f^2/(
c*e^4*x^4+4*c*d*e^3*x^3+6*c*d^2*e^2*x^2+4*c*d^3*e*x+b*e^2*x^2+c*d^4+2*b*d*e*x+b*d^2+a)^2*d^5/e/(16*a^2*c^2-8*a
*b^2*c+b^4)*b*c^2+5/8*f^2/(c*e^4*x^4+4*c*d*e^3*x^3+6*c*d^2*e^2*x^2+4*c*d^3*e*x+b*e^2*x^2+c*d^4+2*b*d*e*x+b*d^2
+a)^2*d^3/e/(16*a^2*c^2-8*a*b^2*c+b^4)*b^2*c+35/2*f^2/(c*e^4*x^4+4*c*d*e^3*x^3+6*c*d^2*e^2*x^2+4*c*d^3*e*x+b*e
^2*x^2+c*d^4+2*b*d*e*x+b*d^2+a)^2*c^3*d*e^5/(16*a^2*c^2-8*a*b^2*c+b^4)*x^6

________________________________________________________________________________________

Maxima [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*f*x+d*f)^2/(a+b*(e*x+d)^2+c*(e*x+d)^4)^3,x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [B]  time = 4.16709, size = 16847, normalized size = 44.93 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*f*x+d*f)^2/(a+b*(e*x+d)^2+c*(e*x+d)^4)^3,x, algorithm="fricas")

[Out]

1/16*(2*(b^2*c^2 + 20*a*c^3)*e^7*f^2*x^7 + 14*(b^2*c^2 + 20*a*c^3)*d*e^6*f^2*x^6 + 2*(2*b^3*c + 28*a*b*c^2 + 2
1*(b^2*c^2 + 20*a*c^3)*d^2)*e^5*f^2*x^5 + 10*(7*(b^2*c^2 + 20*a*c^3)*d^3 + 2*(b^3*c + 14*a*b*c^2)*d)*e^4*f^2*x
^4 + 2*(35*(b^2*c^2 + 20*a*c^3)*d^4 + b^4 + 5*a*b^2*c + 36*a^2*c^2 + 20*(b^3*c + 14*a*b*c^2)*d^2)*e^3*f^2*x^3
+ 2*(21*(b^2*c^2 + 20*a*c^3)*d^5 + 20*(b^3*c + 14*a*b*c^2)*d^3 + 3*(b^4 + 5*a*b^2*c + 36*a^2*c^2)*d)*e^2*f^2*x
^2 + 2*(7*(b^2*c^2 + 20*a*c^3)*d^6 + 10*(b^3*c + 14*a*b*c^2)*d^4 - a*b^3 + 16*a^2*b*c + 3*(b^4 + 5*a*b^2*c + 3
6*a^2*c^2)*d^2)*e*f^2*x + 2*((b^2*c^2 + 20*a*c^3)*d^7 + 2*(b^3*c + 14*a*b*c^2)*d^5 + (b^4 + 5*a*b^2*c + 36*a^2
*c^2)*d^3 - (a*b^3 - 16*a^2*b*c)*d)*f^2 + sqrt(1/2)*((a*b^4*c^2 - 8*a^2*b^2*c^3 + 16*a^3*c^4)*e^9*x^8 + 8*(a*b
^4*c^2 - 8*a^2*b^2*c^3 + 16*a^3*c^4)*d*e^8*x^7 + 2*(a*b^5*c - 8*a^2*b^3*c^2 + 16*a^3*b*c^3 + 14*(a*b^4*c^2 - 8
*a^2*b^2*c^3 + 16*a^3*c^4)*d^2)*e^7*x^6 + 4*(14*(a*b^4*c^2 - 8*a^2*b^2*c^3 + 16*a^3*c^4)*d^3 + 3*(a*b^5*c - 8*
a^2*b^3*c^2 + 16*a^3*b*c^3)*d)*e^6*x^5 + (a*b^6 - 6*a^2*b^4*c + 32*a^4*c^3 + 70*(a*b^4*c^2 - 8*a^2*b^2*c^3 + 1
6*a^3*c^4)*d^4 + 30*(a*b^5*c - 8*a^2*b^3*c^2 + 16*a^3*b*c^3)*d^2)*e^5*x^4 + 4*(14*(a*b^4*c^2 - 8*a^2*b^2*c^3 +
 16*a^3*c^4)*d^5 + 10*(a*b^5*c - 8*a^2*b^3*c^2 + 16*a^3*b*c^3)*d^3 + (a*b^6 - 6*a^2*b^4*c + 32*a^4*c^3)*d)*e^4
*x^3 + 2*(a^2*b^5 - 8*a^3*b^3*c + 16*a^4*b*c^2 + 14*(a*b^4*c^2 - 8*a^2*b^2*c^3 + 16*a^3*c^4)*d^6 + 15*(a*b^5*c
 - 8*a^2*b^3*c^2 + 16*a^3*b*c^3)*d^4 + 3*(a*b^6 - 6*a^2*b^4*c + 32*a^4*c^3)*d^2)*e^3*x^2 + 4*(2*(a*b^4*c^2 - 8
*a^2*b^2*c^3 + 16*a^3*c^4)*d^7 + 3*(a*b^5*c - 8*a^2*b^3*c^2 + 16*a^3*b*c^3)*d^5 + (a*b^6 - 6*a^2*b^4*c + 32*a^
4*c^3)*d^3 + (a^2*b^5 - 8*a^3*b^3*c + 16*a^4*b*c^2)*d)*e^2*x + ((a*b^4*c^2 - 8*a^2*b^2*c^3 + 16*a^3*c^4)*d^8 +
 a^3*b^4 - 8*a^4*b^2*c + 16*a^5*c^2 + 2*(a*b^5*c - 8*a^2*b^3*c^2 + 16*a^3*b*c^3)*d^6 + (a*b^6 - 6*a^2*b^4*c +
32*a^4*c^3)*d^4 + 2*(a^2*b^5 - 8*a^3*b^3*c + 16*a^4*b*c^2)*d^2)*e)*sqrt(-((b^7 - 35*a*b^5*c + 280*a^2*b^3*c^2
+ 1680*a^3*b*c^3)*f^4 + (a^3*b^10 - 20*a^4*b^8*c + 160*a^5*b^6*c^2 - 640*a^6*b^4*c^3 + 1280*a^7*b^2*c^4 - 1024
*a^8*c^5)*sqrt((b^4 - 50*a*b^2*c + 625*a^2*c^2)*f^8/((a^6*b^10 - 20*a^7*b^8*c + 160*a^8*b^6*c^2 - 640*a^9*b^4*
c^3 + 1280*a^10*b^2*c^4 - 1024*a^11*c^5)*e^4))*e^2)/((a^3*b^10 - 20*a^4*b^8*c + 160*a^5*b^6*c^2 - 640*a^6*b^4*
c^3 + 1280*a^7*b^2*c^4 - 1024*a^8*c^5)*e^2))*log((35*b^6*c^2 - 1491*a*b^4*c^3 + 15000*a^2*b^2*c^4 + 10000*a^3*
c^5)*e*f^6*x + (35*b^6*c^2 - 1491*a*b^4*c^3 + 15000*a^2*b^2*c^4 + 10000*a^3*c^5)*d*f^6 + 1/2*sqrt(1/2)*((b^11
- 53*a*b^9*c + 940*a^2*b^7*c^2 - 6832*a^3*b^5*c^3 + 21824*a^4*b^3*c^4 - 25600*a^5*b*c^5)*e*f^4 - (a^3*b^14 - 3
8*a^4*b^12*c + 480*a^5*b^10*c^2 - 2720*a^6*b^8*c^3 + 6400*a^7*b^6*c^4 + 1536*a^8*b^4*c^5 - 32768*a^9*b^2*c^6 +
 40960*a^10*c^7)*sqrt((b^4 - 50*a*b^2*c + 625*a^2*c^2)*f^8/((a^6*b^10 - 20*a^7*b^8*c + 160*a^8*b^6*c^2 - 640*a
^9*b^4*c^3 + 1280*a^10*b^2*c^4 - 1024*a^11*c^5)*e^4))*e^3)*sqrt(-((b^7 - 35*a*b^5*c + 280*a^2*b^3*c^2 + 1680*a
^3*b*c^3)*f^4 + (a^3*b^10 - 20*a^4*b^8*c + 160*a^5*b^6*c^2 - 640*a^6*b^4*c^3 + 1280*a^7*b^2*c^4 - 1024*a^8*c^5
)*sqrt((b^4 - 50*a*b^2*c + 625*a^2*c^2)*f^8/((a^6*b^10 - 20*a^7*b^8*c + 160*a^8*b^6*c^2 - 640*a^9*b^4*c^3 + 12
80*a^10*b^2*c^4 - 1024*a^11*c^5)*e^4))*e^2)/((a^3*b^10 - 20*a^4*b^8*c + 160*a^5*b^6*c^2 - 640*a^6*b^4*c^3 + 12
80*a^7*b^2*c^4 - 1024*a^8*c^5)*e^2))) - sqrt(1/2)*((a*b^4*c^2 - 8*a^2*b^2*c^3 + 16*a^3*c^4)*e^9*x^8 + 8*(a*b^4
*c^2 - 8*a^2*b^2*c^3 + 16*a^3*c^4)*d*e^8*x^7 + 2*(a*b^5*c - 8*a^2*b^3*c^2 + 16*a^3*b*c^3 + 14*(a*b^4*c^2 - 8*a
^2*b^2*c^3 + 16*a^3*c^4)*d^2)*e^7*x^6 + 4*(14*(a*b^4*c^2 - 8*a^2*b^2*c^3 + 16*a^3*c^4)*d^3 + 3*(a*b^5*c - 8*a^
2*b^3*c^2 + 16*a^3*b*c^3)*d)*e^6*x^5 + (a*b^6 - 6*a^2*b^4*c + 32*a^4*c^3 + 70*(a*b^4*c^2 - 8*a^2*b^2*c^3 + 16*
a^3*c^4)*d^4 + 30*(a*b^5*c - 8*a^2*b^3*c^2 + 16*a^3*b*c^3)*d^2)*e^5*x^4 + 4*(14*(a*b^4*c^2 - 8*a^2*b^2*c^3 + 1
6*a^3*c^4)*d^5 + 10*(a*b^5*c - 8*a^2*b^3*c^2 + 16*a^3*b*c^3)*d^3 + (a*b^6 - 6*a^2*b^4*c + 32*a^4*c^3)*d)*e^4*x
^3 + 2*(a^2*b^5 - 8*a^3*b^3*c + 16*a^4*b*c^2 + 14*(a*b^4*c^2 - 8*a^2*b^2*c^3 + 16*a^3*c^4)*d^6 + 15*(a*b^5*c -
 8*a^2*b^3*c^2 + 16*a^3*b*c^3)*d^4 + 3*(a*b^6 - 6*a^2*b^4*c + 32*a^4*c^3)*d^2)*e^3*x^2 + 4*(2*(a*b^4*c^2 - 8*a
^2*b^2*c^3 + 16*a^3*c^4)*d^7 + 3*(a*b^5*c - 8*a^2*b^3*c^2 + 16*a^3*b*c^3)*d^5 + (a*b^6 - 6*a^2*b^4*c + 32*a^4*
c^3)*d^3 + (a^2*b^5 - 8*a^3*b^3*c + 16*a^4*b*c^2)*d)*e^2*x + ((a*b^4*c^2 - 8*a^2*b^2*c^3 + 16*a^3*c^4)*d^8 + a
^3*b^4 - 8*a^4*b^2*c + 16*a^5*c^2 + 2*(a*b^5*c - 8*a^2*b^3*c^2 + 16*a^3*b*c^3)*d^6 + (a*b^6 - 6*a^2*b^4*c + 32
*a^4*c^3)*d^4 + 2*(a^2*b^5 - 8*a^3*b^3*c + 16*a^4*b*c^2)*d^2)*e)*sqrt(-((b^7 - 35*a*b^5*c + 280*a^2*b^3*c^2 +
1680*a^3*b*c^3)*f^4 + (a^3*b^10 - 20*a^4*b^8*c + 160*a^5*b^6*c^2 - 640*a^6*b^4*c^3 + 1280*a^7*b^2*c^4 - 1024*a
^8*c^5)*sqrt((b^4 - 50*a*b^2*c + 625*a^2*c^2)*f^8/((a^6*b^10 - 20*a^7*b^8*c + 160*a^8*b^6*c^2 - 640*a^9*b^4*c^
3 + 1280*a^10*b^2*c^4 - 1024*a^11*c^5)*e^4))*e^2)/((a^3*b^10 - 20*a^4*b^8*c + 160*a^5*b^6*c^2 - 640*a^6*b^4*c^
3 + 1280*a^7*b^2*c^4 - 1024*a^8*c^5)*e^2))*log((35*b^6*c^2 - 1491*a*b^4*c^3 + 15000*a^2*b^2*c^4 + 10000*a^3*c^
5)*e*f^6*x + (35*b^6*c^2 - 1491*a*b^4*c^3 + 15000*a^2*b^2*c^4 + 10000*a^3*c^5)*d*f^6 - 1/2*sqrt(1/2)*((b^11 -
53*a*b^9*c + 940*a^2*b^7*c^2 - 6832*a^3*b^5*c^3 + 21824*a^4*b^3*c^4 - 25600*a^5*b*c^5)*e*f^4 - (a^3*b^14 - 38*
a^4*b^12*c + 480*a^5*b^10*c^2 - 2720*a^6*b^8*c^3 + 6400*a^7*b^6*c^4 + 1536*a^8*b^4*c^5 - 32768*a^9*b^2*c^6 + 4
0960*a^10*c^7)*sqrt((b^4 - 50*a*b^2*c + 625*a^2*c^2)*f^8/((a^6*b^10 - 20*a^7*b^8*c + 160*a^8*b^6*c^2 - 640*a^9
*b^4*c^3 + 1280*a^10*b^2*c^4 - 1024*a^11*c^5)*e^4))*e^3)*sqrt(-((b^7 - 35*a*b^5*c + 280*a^2*b^3*c^2 + 1680*a^3
*b*c^3)*f^4 + (a^3*b^10 - 20*a^4*b^8*c + 160*a^5*b^6*c^2 - 640*a^6*b^4*c^3 + 1280*a^7*b^2*c^4 - 1024*a^8*c^5)*
sqrt((b^4 - 50*a*b^2*c + 625*a^2*c^2)*f^8/((a^6*b^10 - 20*a^7*b^8*c + 160*a^8*b^6*c^2 - 640*a^9*b^4*c^3 + 1280
*a^10*b^2*c^4 - 1024*a^11*c^5)*e^4))*e^2)/((a^3*b^10 - 20*a^4*b^8*c + 160*a^5*b^6*c^2 - 640*a^6*b^4*c^3 + 1280
*a^7*b^2*c^4 - 1024*a^8*c^5)*e^2))) + sqrt(1/2)*((a*b^4*c^2 - 8*a^2*b^2*c^3 + 16*a^3*c^4)*e^9*x^8 + 8*(a*b^4*c
^2 - 8*a^2*b^2*c^3 + 16*a^3*c^4)*d*e^8*x^7 + 2*(a*b^5*c - 8*a^2*b^3*c^2 + 16*a^3*b*c^3 + 14*(a*b^4*c^2 - 8*a^2
*b^2*c^3 + 16*a^3*c^4)*d^2)*e^7*x^6 + 4*(14*(a*b^4*c^2 - 8*a^2*b^2*c^3 + 16*a^3*c^4)*d^3 + 3*(a*b^5*c - 8*a^2*
b^3*c^2 + 16*a^3*b*c^3)*d)*e^6*x^5 + (a*b^6 - 6*a^2*b^4*c + 32*a^4*c^3 + 70*(a*b^4*c^2 - 8*a^2*b^2*c^3 + 16*a^
3*c^4)*d^4 + 30*(a*b^5*c - 8*a^2*b^3*c^2 + 16*a^3*b*c^3)*d^2)*e^5*x^4 + 4*(14*(a*b^4*c^2 - 8*a^2*b^2*c^3 + 16*
a^3*c^4)*d^5 + 10*(a*b^5*c - 8*a^2*b^3*c^2 + 16*a^3*b*c^3)*d^3 + (a*b^6 - 6*a^2*b^4*c + 32*a^4*c^3)*d)*e^4*x^3
 + 2*(a^2*b^5 - 8*a^3*b^3*c + 16*a^4*b*c^2 + 14*(a*b^4*c^2 - 8*a^2*b^2*c^3 + 16*a^3*c^4)*d^6 + 15*(a*b^5*c - 8
*a^2*b^3*c^2 + 16*a^3*b*c^3)*d^4 + 3*(a*b^6 - 6*a^2*b^4*c + 32*a^4*c^3)*d^2)*e^3*x^2 + 4*(2*(a*b^4*c^2 - 8*a^2
*b^2*c^3 + 16*a^3*c^4)*d^7 + 3*(a*b^5*c - 8*a^2*b^3*c^2 + 16*a^3*b*c^3)*d^5 + (a*b^6 - 6*a^2*b^4*c + 32*a^4*c^
3)*d^3 + (a^2*b^5 - 8*a^3*b^3*c + 16*a^4*b*c^2)*d)*e^2*x + ((a*b^4*c^2 - 8*a^2*b^2*c^3 + 16*a^3*c^4)*d^8 + a^3
*b^4 - 8*a^4*b^2*c + 16*a^5*c^2 + 2*(a*b^5*c - 8*a^2*b^3*c^2 + 16*a^3*b*c^3)*d^6 + (a*b^6 - 6*a^2*b^4*c + 32*a
^4*c^3)*d^4 + 2*(a^2*b^5 - 8*a^3*b^3*c + 16*a^4*b*c^2)*d^2)*e)*sqrt(-((b^7 - 35*a*b^5*c + 280*a^2*b^3*c^2 + 16
80*a^3*b*c^3)*f^4 - (a^3*b^10 - 20*a^4*b^8*c + 160*a^5*b^6*c^2 - 640*a^6*b^4*c^3 + 1280*a^7*b^2*c^4 - 1024*a^8
*c^5)*sqrt((b^4 - 50*a*b^2*c + 625*a^2*c^2)*f^8/((a^6*b^10 - 20*a^7*b^8*c + 160*a^8*b^6*c^2 - 640*a^9*b^4*c^3
+ 1280*a^10*b^2*c^4 - 1024*a^11*c^5)*e^4))*e^2)/((a^3*b^10 - 20*a^4*b^8*c + 160*a^5*b^6*c^2 - 640*a^6*b^4*c^3
+ 1280*a^7*b^2*c^4 - 1024*a^8*c^5)*e^2))*log((35*b^6*c^2 - 1491*a*b^4*c^3 + 15000*a^2*b^2*c^4 + 10000*a^3*c^5)
*e*f^6*x + (35*b^6*c^2 - 1491*a*b^4*c^3 + 15000*a^2*b^2*c^4 + 10000*a^3*c^5)*d*f^6 + 1/2*sqrt(1/2)*((b^11 - 53
*a*b^9*c + 940*a^2*b^7*c^2 - 6832*a^3*b^5*c^3 + 21824*a^4*b^3*c^4 - 25600*a^5*b*c^5)*e*f^4 + (a^3*b^14 - 38*a^
4*b^12*c + 480*a^5*b^10*c^2 - 2720*a^6*b^8*c^3 + 6400*a^7*b^6*c^4 + 1536*a^8*b^4*c^5 - 32768*a^9*b^2*c^6 + 409
60*a^10*c^7)*sqrt((b^4 - 50*a*b^2*c + 625*a^2*c^2)*f^8/((a^6*b^10 - 20*a^7*b^8*c + 160*a^8*b^6*c^2 - 640*a^9*b
^4*c^3 + 1280*a^10*b^2*c^4 - 1024*a^11*c^5)*e^4))*e^3)*sqrt(-((b^7 - 35*a*b^5*c + 280*a^2*b^3*c^2 + 1680*a^3*b
*c^3)*f^4 - (a^3*b^10 - 20*a^4*b^8*c + 160*a^5*b^6*c^2 - 640*a^6*b^4*c^3 + 1280*a^7*b^2*c^4 - 1024*a^8*c^5)*sq
rt((b^4 - 50*a*b^2*c + 625*a^2*c^2)*f^8/((a^6*b^10 - 20*a^7*b^8*c + 160*a^8*b^6*c^2 - 640*a^9*b^4*c^3 + 1280*a
^10*b^2*c^4 - 1024*a^11*c^5)*e^4))*e^2)/((a^3*b^10 - 20*a^4*b^8*c + 160*a^5*b^6*c^2 - 640*a^6*b^4*c^3 + 1280*a
^7*b^2*c^4 - 1024*a^8*c^5)*e^2))) - sqrt(1/2)*((a*b^4*c^2 - 8*a^2*b^2*c^3 + 16*a^3*c^4)*e^9*x^8 + 8*(a*b^4*c^2
 - 8*a^2*b^2*c^3 + 16*a^3*c^4)*d*e^8*x^7 + 2*(a*b^5*c - 8*a^2*b^3*c^2 + 16*a^3*b*c^3 + 14*(a*b^4*c^2 - 8*a^2*b
^2*c^3 + 16*a^3*c^4)*d^2)*e^7*x^6 + 4*(14*(a*b^4*c^2 - 8*a^2*b^2*c^3 + 16*a^3*c^4)*d^3 + 3*(a*b^5*c - 8*a^2*b^
3*c^2 + 16*a^3*b*c^3)*d)*e^6*x^5 + (a*b^6 - 6*a^2*b^4*c + 32*a^4*c^3 + 70*(a*b^4*c^2 - 8*a^2*b^2*c^3 + 16*a^3*
c^4)*d^4 + 30*(a*b^5*c - 8*a^2*b^3*c^2 + 16*a^3*b*c^3)*d^2)*e^5*x^4 + 4*(14*(a*b^4*c^2 - 8*a^2*b^2*c^3 + 16*a^
3*c^4)*d^5 + 10*(a*b^5*c - 8*a^2*b^3*c^2 + 16*a^3*b*c^3)*d^3 + (a*b^6 - 6*a^2*b^4*c + 32*a^4*c^3)*d)*e^4*x^3 +
 2*(a^2*b^5 - 8*a^3*b^3*c + 16*a^4*b*c^2 + 14*(a*b^4*c^2 - 8*a^2*b^2*c^3 + 16*a^3*c^4)*d^6 + 15*(a*b^5*c - 8*a
^2*b^3*c^2 + 16*a^3*b*c^3)*d^4 + 3*(a*b^6 - 6*a^2*b^4*c + 32*a^4*c^3)*d^2)*e^3*x^2 + 4*(2*(a*b^4*c^2 - 8*a^2*b
^2*c^3 + 16*a^3*c^4)*d^7 + 3*(a*b^5*c - 8*a^2*b^3*c^2 + 16*a^3*b*c^3)*d^5 + (a*b^6 - 6*a^2*b^4*c + 32*a^4*c^3)
*d^3 + (a^2*b^5 - 8*a^3*b^3*c + 16*a^4*b*c^2)*d)*e^2*x + ((a*b^4*c^2 - 8*a^2*b^2*c^3 + 16*a^3*c^4)*d^8 + a^3*b
^4 - 8*a^4*b^2*c + 16*a^5*c^2 + 2*(a*b^5*c - 8*a^2*b^3*c^2 + 16*a^3*b*c^3)*d^6 + (a*b^6 - 6*a^2*b^4*c + 32*a^4
*c^3)*d^4 + 2*(a^2*b^5 - 8*a^3*b^3*c + 16*a^4*b*c^2)*d^2)*e)*sqrt(-((b^7 - 35*a*b^5*c + 280*a^2*b^3*c^2 + 1680
*a^3*b*c^3)*f^4 - (a^3*b^10 - 20*a^4*b^8*c + 160*a^5*b^6*c^2 - 640*a^6*b^4*c^3 + 1280*a^7*b^2*c^4 - 1024*a^8*c
^5)*sqrt((b^4 - 50*a*b^2*c + 625*a^2*c^2)*f^8/((a^6*b^10 - 20*a^7*b^8*c + 160*a^8*b^6*c^2 - 640*a^9*b^4*c^3 +
1280*a^10*b^2*c^4 - 1024*a^11*c^5)*e^4))*e^2)/((a^3*b^10 - 20*a^4*b^8*c + 160*a^5*b^6*c^2 - 640*a^6*b^4*c^3 +
1280*a^7*b^2*c^4 - 1024*a^8*c^5)*e^2))*log((35*b^6*c^2 - 1491*a*b^4*c^3 + 15000*a^2*b^2*c^4 + 10000*a^3*c^5)*e
*f^6*x + (35*b^6*c^2 - 1491*a*b^4*c^3 + 15000*a^2*b^2*c^4 + 10000*a^3*c^5)*d*f^6 - 1/2*sqrt(1/2)*((b^11 - 53*a
*b^9*c + 940*a^2*b^7*c^2 - 6832*a^3*b^5*c^3 + 21824*a^4*b^3*c^4 - 25600*a^5*b*c^5)*e*f^4 + (a^3*b^14 - 38*a^4*
b^12*c + 480*a^5*b^10*c^2 - 2720*a^6*b^8*c^3 + 6400*a^7*b^6*c^4 + 1536*a^8*b^4*c^5 - 32768*a^9*b^2*c^6 + 40960
*a^10*c^7)*sqrt((b^4 - 50*a*b^2*c + 625*a^2*c^2)*f^8/((a^6*b^10 - 20*a^7*b^8*c + 160*a^8*b^6*c^2 - 640*a^9*b^4
*c^3 + 1280*a^10*b^2*c^4 - 1024*a^11*c^5)*e^4))*e^3)*sqrt(-((b^7 - 35*a*b^5*c + 280*a^2*b^3*c^2 + 1680*a^3*b*c
^3)*f^4 - (a^3*b^10 - 20*a^4*b^8*c + 160*a^5*b^6*c^2 - 640*a^6*b^4*c^3 + 1280*a^7*b^2*c^4 - 1024*a^8*c^5)*sqrt
((b^4 - 50*a*b^2*c + 625*a^2*c^2)*f^8/((a^6*b^10 - 20*a^7*b^8*c + 160*a^8*b^6*c^2 - 640*a^9*b^4*c^3 + 1280*a^1
0*b^2*c^4 - 1024*a^11*c^5)*e^4))*e^2)/((a^3*b^10 - 20*a^4*b^8*c + 160*a^5*b^6*c^2 - 640*a^6*b^4*c^3 + 1280*a^7
*b^2*c^4 - 1024*a^8*c^5)*e^2))))/((a*b^4*c^2 - 8*a^2*b^2*c^3 + 16*a^3*c^4)*e^9*x^8 + 8*(a*b^4*c^2 - 8*a^2*b^2*
c^3 + 16*a^3*c^4)*d*e^8*x^7 + 2*(a*b^5*c - 8*a^2*b^3*c^2 + 16*a^3*b*c^3 + 14*(a*b^4*c^2 - 8*a^2*b^2*c^3 + 16*a
^3*c^4)*d^2)*e^7*x^6 + 4*(14*(a*b^4*c^2 - 8*a^2*b^2*c^3 + 16*a^3*c^4)*d^3 + 3*(a*b^5*c - 8*a^2*b^3*c^2 + 16*a^
3*b*c^3)*d)*e^6*x^5 + (a*b^6 - 6*a^2*b^4*c + 32*a^4*c^3 + 70*(a*b^4*c^2 - 8*a^2*b^2*c^3 + 16*a^3*c^4)*d^4 + 30
*(a*b^5*c - 8*a^2*b^3*c^2 + 16*a^3*b*c^3)*d^2)*e^5*x^4 + 4*(14*(a*b^4*c^2 - 8*a^2*b^2*c^3 + 16*a^3*c^4)*d^5 +
10*(a*b^5*c - 8*a^2*b^3*c^2 + 16*a^3*b*c^3)*d^3 + (a*b^6 - 6*a^2*b^4*c + 32*a^4*c^3)*d)*e^4*x^3 + 2*(a^2*b^5 -
 8*a^3*b^3*c + 16*a^4*b*c^2 + 14*(a*b^4*c^2 - 8*a^2*b^2*c^3 + 16*a^3*c^4)*d^6 + 15*(a*b^5*c - 8*a^2*b^3*c^2 +
16*a^3*b*c^3)*d^4 + 3*(a*b^6 - 6*a^2*b^4*c + 32*a^4*c^3)*d^2)*e^3*x^2 + 4*(2*(a*b^4*c^2 - 8*a^2*b^2*c^3 + 16*a
^3*c^4)*d^7 + 3*(a*b^5*c - 8*a^2*b^3*c^2 + 16*a^3*b*c^3)*d^5 + (a*b^6 - 6*a^2*b^4*c + 32*a^4*c^3)*d^3 + (a^2*b
^5 - 8*a^3*b^3*c + 16*a^4*b*c^2)*d)*e^2*x + ((a*b^4*c^2 - 8*a^2*b^2*c^3 + 16*a^3*c^4)*d^8 + a^3*b^4 - 8*a^4*b^
2*c + 16*a^5*c^2 + 2*(a*b^5*c - 8*a^2*b^3*c^2 + 16*a^3*b*c^3)*d^6 + (a*b^6 - 6*a^2*b^4*c + 32*a^4*c^3)*d^4 + 2
*(a^2*b^5 - 8*a^3*b^3*c + 16*a^4*b*c^2)*d^2)*e)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*f*x+d*f)**2/(a+b*(e*x+d)**2+c*(e*x+d)**4)**3,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (e f x + d f\right )}^{2}}{{\left ({\left (e x + d\right )}^{4} c +{\left (e x + d\right )}^{2} b + a\right )}^{3}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*f*x+d*f)^2/(a+b*(e*x+d)^2+c*(e*x+d)^4)^3,x, algorithm="giac")

[Out]

integrate((e*f*x + d*f)^2/((e*x + d)^4*c + (e*x + d)^2*b + a)^3, x)